Cargando…

Neuron–astrocyte interactions in the medial nucleus of the trapezoid body

The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a cur...

Descripción completa

Detalles Bibliográficos
Autores principales: Reyes-Haro, Daniel, Müller, Jochen, Boresch, Margarethe, Pivneva, Tatjyana, Benedetti, Bruno, Scheller, Anja, Nolte, Christiane, Kettenmann, Helmut
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888059/
https://www.ncbi.nlm.nih.gov/pubmed/20479112
http://dx.doi.org/10.1085/jgp.200910354
Descripción
Sumario:The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a current response that was not mediated by glutamate receptors or glutamate uptake, despite the fact that astrocytes express functional receptors and transporters. However, astrocytes showed spontaneous Ca(2+) responses and neuronal slow inward currents (nSICs) were recorded in the postsynaptic principal neurons (PPNs) of the MNTB. These currents were correlated with astrocytic Ca(2+) activity because dialysis of astrocytes with BAPTA abolished nSICs. Moreover, the frequency of these currents was increased when Ca(2+) responses in astrocytes were elicited. NMDA antagonists selectively blocked nSICs while D-serine degradation significantly reduced NMDA-mediated currents. In contrast to previous studies in the hippocampus, these NMDA-mediated currents were rarely synchronized.