Cargando…
Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies
BACKGROUND: Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder. It is associated with risk for preterm birth and HIV infection. The etiology of the condition has been debated for nearly half a century and the lack of knowledge about its cause and progression has stymied efforts...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890570/ https://www.ncbi.nlm.nih.gov/pubmed/20540756 http://dx.doi.org/10.1186/1471-2164-11-375 |
_version_ | 1782182807778361344 |
---|---|
author | Harwich, Michael D Alves, Joao M Buck, Gregory A Strauss, Jerome F Patterson, Jennifer L Oki, Aminat T Girerd, Philippe H Jefferson, Kimberly K |
author_facet | Harwich, Michael D Alves, Joao M Buck, Gregory A Strauss, Jerome F Patterson, Jennifer L Oki, Aminat T Girerd, Philippe H Jefferson, Kimberly K |
author_sort | Harwich, Michael D |
collection | PubMed |
description | BACKGROUND: Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder. It is associated with risk for preterm birth and HIV infection. The etiology of the condition has been debated for nearly half a century and the lack of knowledge about its cause and progression has stymied efforts to improve therapy and prevention. Gardnerella vaginalis was originally identified as the causative agent, but subsequent findings that it is commonly isolated from seemingly healthy women cast doubt on this claim. Recent studies shedding light on the virulence properties of G. vaginalis, however, have drawn the species back into the spotlight. RESULTS: In this study, we sequenced the genomes of a strain of G. vaginalis from a healthy woman, and one from a woman with bacterial vaginosis. Comparative analysis of the genomes revealed significant divergence and in vitro studies indicated disparities in the virulence potential of the two strains. The commensal isolate exhibited reduced cytotoxicity and yet the cytolysin proteins encoded by the two strains were nearly identical, differing at a single amino acid, and were transcribed at similar levels. The BV-associated strain encoded a different variant of a biofilm associated protein gene and demonstrated greater adherence, aggregation, and biofilm formation. Using filters with different pore sizes, we found that direct contact between the bacteria and epithelial cells is required for cytotoxicity. CONCLUSIONS: The results indicated that contact is required for cytotoxicity and suggested that reduced cytotoxicity in the commensal isolate could be due to impaired adherence. This study outlines two distinct genotypic variants of G. vaginalis, one apparently commensal and one pathogenic, and presents evidence for disparate virulence potentials. |
format | Text |
id | pubmed-2890570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28905702010-06-24 Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies Harwich, Michael D Alves, Joao M Buck, Gregory A Strauss, Jerome F Patterson, Jennifer L Oki, Aminat T Girerd, Philippe H Jefferson, Kimberly K BMC Genomics Research Article BACKGROUND: Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder. It is associated with risk for preterm birth and HIV infection. The etiology of the condition has been debated for nearly half a century and the lack of knowledge about its cause and progression has stymied efforts to improve therapy and prevention. Gardnerella vaginalis was originally identified as the causative agent, but subsequent findings that it is commonly isolated from seemingly healthy women cast doubt on this claim. Recent studies shedding light on the virulence properties of G. vaginalis, however, have drawn the species back into the spotlight. RESULTS: In this study, we sequenced the genomes of a strain of G. vaginalis from a healthy woman, and one from a woman with bacterial vaginosis. Comparative analysis of the genomes revealed significant divergence and in vitro studies indicated disparities in the virulence potential of the two strains. The commensal isolate exhibited reduced cytotoxicity and yet the cytolysin proteins encoded by the two strains were nearly identical, differing at a single amino acid, and were transcribed at similar levels. The BV-associated strain encoded a different variant of a biofilm associated protein gene and demonstrated greater adherence, aggregation, and biofilm formation. Using filters with different pore sizes, we found that direct contact between the bacteria and epithelial cells is required for cytotoxicity. CONCLUSIONS: The results indicated that contact is required for cytotoxicity and suggested that reduced cytotoxicity in the commensal isolate could be due to impaired adherence. This study outlines two distinct genotypic variants of G. vaginalis, one apparently commensal and one pathogenic, and presents evidence for disparate virulence potentials. BioMed Central 2010-06-11 /pmc/articles/PMC2890570/ /pubmed/20540756 http://dx.doi.org/10.1186/1471-2164-11-375 Text en Copyright ©2010 Harwich Jr et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Harwich, Michael D Alves, Joao M Buck, Gregory A Strauss, Jerome F Patterson, Jennifer L Oki, Aminat T Girerd, Philippe H Jefferson, Kimberly K Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title | Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title_full | Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title_fullStr | Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title_full_unstemmed | Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title_short | Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies |
title_sort | drawing the line between commensal and pathogenic gardnerella vaginalis through genome analysis and virulence studies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890570/ https://www.ncbi.nlm.nih.gov/pubmed/20540756 http://dx.doi.org/10.1186/1471-2164-11-375 |
work_keys_str_mv | AT harwichmichaeld drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT alvesjoaom drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT buckgregorya drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT straussjeromef drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT pattersonjenniferl drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT okiaminatt drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT girerdphilippeh drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies AT jeffersonkimberlyk drawingthelinebetweencommensalandpathogenicgardnerellavaginalisthroughgenomeanalysisandvirulencestudies |