Cargando…

Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

BACKGROUND: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. METHODS/PRINCIPAL FINDINGS: Adipose-derived stromal cells (ASCs) were allowed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yue, Wagner, Diane R., Bekerman, Elena, Chiou, Michael, James, Aaron W., Carter, Dennis, Longaker, Michael T.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890586/
https://www.ncbi.nlm.nih.gov/pubmed/20585662
http://dx.doi.org/10.1371/journal.pone.0011279
Descripción
Sumario:BACKGROUND: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. METHODS/PRINCIPAL FINDINGS: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm(2)), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm(2)) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. CONCLUSIONS/SIGNIFICANCE: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation.