Cargando…
Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males
INTRODUCTION: The neurotransmitter dopamine has frequently been implicated in reward processing but is also, increasingly, implicated in punishment processing. We have previously shown that both patients with Parkinson's disease and healthy individuals with low dopamine (DA) synthesis are bette...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892070/ https://www.ncbi.nlm.nih.gov/pubmed/20495788 http://dx.doi.org/10.1007/s00213-010-1880-1 |
_version_ | 1782182920589410304 |
---|---|
author | Robinson, Oliver J. Standing, Holly R. DeVito, Elise E. Cools, Roshan Sahakian, Barbara J. |
author_facet | Robinson, Oliver J. Standing, Holly R. DeVito, Elise E. Cools, Roshan Sahakian, Barbara J. |
author_sort | Robinson, Oliver J. |
collection | PubMed |
description | INTRODUCTION: The neurotransmitter dopamine has frequently been implicated in reward processing but is also, increasingly, implicated in punishment processing. We have previously shown that both patients with Parkinson's disease and healthy individuals with low dopamine (DA) synthesis are better at reversal learning based on punishment than reward. Here, we extend these prior findings by examining the effects of artificially reducing DA synthesis in healthy individuals performing this previously employed task. METHODS: In a double-blind, placebo-controlled crossover design, we applied the acute tyrosine and phenylalanine depletion (ATPD) procedure to reduce global DA synthesis in 15 female and 14 male subjects. Each subject performed the reward- and punishment-based reversal-learning paradigm. RESULTS: There was a significant three-way interaction between ATPD, the valence of the outcome signalling reversal and the gender of the participants. Examination of punishment and reward-based reversals separately revealed that this was driven by a significant improvement in punishment processing in female but not male subjects following DA depletion. CONCLUSIONS: Reducing DA synthesis in healthy individuals shifted sensitivity of performance from reward to punishment processing. Gender differences in DA synthesis might underlie the selectivity of this effect to female subjects. Such gender biases may go some way towards explaining the gender biases in certain psychiatric disorders such as depression and Parkinson's disease. |
format | Text |
id | pubmed-2892070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-28920702010-07-21 Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males Robinson, Oliver J. Standing, Holly R. DeVito, Elise E. Cools, Roshan Sahakian, Barbara J. Psychopharmacology (Berl) Original Investigation INTRODUCTION: The neurotransmitter dopamine has frequently been implicated in reward processing but is also, increasingly, implicated in punishment processing. We have previously shown that both patients with Parkinson's disease and healthy individuals with low dopamine (DA) synthesis are better at reversal learning based on punishment than reward. Here, we extend these prior findings by examining the effects of artificially reducing DA synthesis in healthy individuals performing this previously employed task. METHODS: In a double-blind, placebo-controlled crossover design, we applied the acute tyrosine and phenylalanine depletion (ATPD) procedure to reduce global DA synthesis in 15 female and 14 male subjects. Each subject performed the reward- and punishment-based reversal-learning paradigm. RESULTS: There was a significant three-way interaction between ATPD, the valence of the outcome signalling reversal and the gender of the participants. Examination of punishment and reward-based reversals separately revealed that this was driven by a significant improvement in punishment processing in female but not male subjects following DA depletion. CONCLUSIONS: Reducing DA synthesis in healthy individuals shifted sensitivity of performance from reward to punishment processing. Gender differences in DA synthesis might underlie the selectivity of this effect to female subjects. Such gender biases may go some way towards explaining the gender biases in certain psychiatric disorders such as depression and Parkinson's disease. Springer-Verlag 2010-05-22 2010 /pmc/articles/PMC2892070/ /pubmed/20495788 http://dx.doi.org/10.1007/s00213-010-1880-1 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Original Investigation Robinson, Oliver J. Standing, Holly R. DeVito, Elise E. Cools, Roshan Sahakian, Barbara J. Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title | Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title_full | Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title_fullStr | Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title_full_unstemmed | Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title_short | Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
title_sort | dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892070/ https://www.ncbi.nlm.nih.gov/pubmed/20495788 http://dx.doi.org/10.1007/s00213-010-1880-1 |
work_keys_str_mv | AT robinsonoliverj dopamineprecursordepletionimprovespunishmentpredictionduringreversallearninginhealthyfemalesbutnotmales AT standinghollyr dopamineprecursordepletionimprovespunishmentpredictionduringreversallearninginhealthyfemalesbutnotmales AT devitoelisee dopamineprecursordepletionimprovespunishmentpredictionduringreversallearninginhealthyfemalesbutnotmales AT coolsroshan dopamineprecursordepletionimprovespunishmentpredictionduringreversallearninginhealthyfemalesbutnotmales AT sahakianbarbaraj dopamineprecursordepletionimprovespunishmentpredictionduringreversallearninginhealthyfemalesbutnotmales |