Cargando…
An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach
BACKGROUND: It is long known within the mathematical literature that the coefficient of determination R(2 )is an inadequate measure for the goodness of fit in nonlinear models. Nevertheless, it is still frequently used within pharmacological and biochemical literature for the analysis and interpreta...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892436/ https://www.ncbi.nlm.nih.gov/pubmed/20529254 http://dx.doi.org/10.1186/1471-2210-10-6 |
_version_ | 1782182943393841152 |
---|---|
author | Spiess, Andrej-Nikolai Neumeyer, Natalie |
author_facet | Spiess, Andrej-Nikolai Neumeyer, Natalie |
author_sort | Spiess, Andrej-Nikolai |
collection | PubMed |
description | BACKGROUND: It is long known within the mathematical literature that the coefficient of determination R(2 )is an inadequate measure for the goodness of fit in nonlinear models. Nevertheless, it is still frequently used within pharmacological and biochemical literature for the analysis and interpretation of nonlinear fitting to data. RESULTS: The intensive simulation approach undermines previous observations and emphasizes the extremely low performance of R(2 )as a basis for model validity and performance when applied to pharmacological/biochemical nonlinear data. In fact, with the 'true' model having up to 500 times more strength of evidence based on Akaike weights, this was only reflected in the third to fifth decimal place of R(2). In addition, even the bias-corrected R(2)(adj )exhibited an extreme bias to higher parametrized models. The bias-corrected AICc and also BIC performed significantly better in this respect. CONCLUSION: Researchers and reviewers should be aware that R(2 )is inappropriate when used for demonstrating the performance or validity of a certain nonlinear model. It should ideally be removed from scientific literature dealing with nonlinear model fitting or at least be supplemented with other methods such as AIC or BIC or used in context to other models in question. |
format | Text |
id | pubmed-2892436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28924362010-06-26 An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach Spiess, Andrej-Nikolai Neumeyer, Natalie BMC Pharmacol Research article BACKGROUND: It is long known within the mathematical literature that the coefficient of determination R(2 )is an inadequate measure for the goodness of fit in nonlinear models. Nevertheless, it is still frequently used within pharmacological and biochemical literature for the analysis and interpretation of nonlinear fitting to data. RESULTS: The intensive simulation approach undermines previous observations and emphasizes the extremely low performance of R(2 )as a basis for model validity and performance when applied to pharmacological/biochemical nonlinear data. In fact, with the 'true' model having up to 500 times more strength of evidence based on Akaike weights, this was only reflected in the third to fifth decimal place of R(2). In addition, even the bias-corrected R(2)(adj )exhibited an extreme bias to higher parametrized models. The bias-corrected AICc and also BIC performed significantly better in this respect. CONCLUSION: Researchers and reviewers should be aware that R(2 )is inappropriate when used for demonstrating the performance or validity of a certain nonlinear model. It should ideally be removed from scientific literature dealing with nonlinear model fitting or at least be supplemented with other methods such as AIC or BIC or used in context to other models in question. BioMed Central 2010-06-07 /pmc/articles/PMC2892436/ /pubmed/20529254 http://dx.doi.org/10.1186/1471-2210-10-6 Text en Copyright ©2010 Spiess and Neumeyer; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Spiess, Andrej-Nikolai Neumeyer, Natalie An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title | An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title_full | An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title_fullStr | An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title_full_unstemmed | An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title_short | An evaluation of R(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach |
title_sort | evaluation of r(2 )as an inadequate measure for nonlinear models in pharmacological and biochemical research: a monte carlo approach |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892436/ https://www.ncbi.nlm.nih.gov/pubmed/20529254 http://dx.doi.org/10.1186/1471-2210-10-6 |
work_keys_str_mv | AT spiessandrejnikolai anevaluationofr2asaninadequatemeasurefornonlinearmodelsinpharmacologicalandbiochemicalresearchamontecarloapproach AT neumeyernatalie anevaluationofr2asaninadequatemeasurefornonlinearmodelsinpharmacologicalandbiochemicalresearchamontecarloapproach AT spiessandrejnikolai evaluationofr2asaninadequatemeasurefornonlinearmodelsinpharmacologicalandbiochemicalresearchamontecarloapproach AT neumeyernatalie evaluationofr2asaninadequatemeasurefornonlinearmodelsinpharmacologicalandbiochemicalresearchamontecarloapproach |