Cargando…
Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI
Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using structura...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892946/ https://www.ncbi.nlm.nih.gov/pubmed/20589235 http://dx.doi.org/10.3389/fnsys.2010.00018 |
_version_ | 1782182991005483008 |
---|---|
author | Barnes, Kelly Anne Cohen, Alexander L. Power, Jonathan D. Nelson, Steven M. Dosenbach, Yannic B. L. Miezin, Francis M. Petersen, Steven E. Schlaggar, Bradley L. |
author_facet | Barnes, Kelly Anne Cohen, Alexander L. Power, Jonathan D. Nelson, Steven M. Dosenbach, Yannic B. L. Miezin, Francis M. Petersen, Steven E. Schlaggar, Bradley L. |
author_sort | Barnes, Kelly Anne |
collection | PubMed |
description | Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using structural MRI. Resting-state functional connectivity MRI (rs-fcMRI) can be used to identify putative cerebral cortical functional areas in humans (Cohen et al., 2008). Here, we determine whether rs-fcMRI can be used to identify divisions in individual human adult basal ganglia. Putative basal ganglia divisions were generated by assigning basal ganglia voxels to groups based on the similarity of whole-brain functional connectivity correlation maps using modularity optimization, a network analysis tool. We assessed the validity of this approach by examining the spatial contiguity and location of putative divisions and whether divisions’ correlation maps were consistent with previously reported patterns of anatomical and functional connectivity. Spatially constrained divisions consistent with the dorsal caudate, ventral striatum, and dorsal caudal putamen could be identified in each subject. Further, correlation maps associated with putative divisions were consistent with their presumed connectivity. These findings suggest that, as in the cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI. Developing and validating these methods should improve the study of brain structure and function, both typical and atypical, by allowing for more precise comparison across individuals. |
format | Text |
id | pubmed-2892946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-28929462010-06-29 Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI Barnes, Kelly Anne Cohen, Alexander L. Power, Jonathan D. Nelson, Steven M. Dosenbach, Yannic B. L. Miezin, Francis M. Petersen, Steven E. Schlaggar, Bradley L. Front Syst Neurosci Neuroscience Studies in non-human primates and humans reveal that discrete regions (henceforth, “divisions”) in the basal ganglia are intricately interconnected with regions in the cerebral cortex. However, divisions within basal ganglia nuclei (e.g., within the caudate) are difficult to identify using structural MRI. Resting-state functional connectivity MRI (rs-fcMRI) can be used to identify putative cerebral cortical functional areas in humans (Cohen et al., 2008). Here, we determine whether rs-fcMRI can be used to identify divisions in individual human adult basal ganglia. Putative basal ganglia divisions were generated by assigning basal ganglia voxels to groups based on the similarity of whole-brain functional connectivity correlation maps using modularity optimization, a network analysis tool. We assessed the validity of this approach by examining the spatial contiguity and location of putative divisions and whether divisions’ correlation maps were consistent with previously reported patterns of anatomical and functional connectivity. Spatially constrained divisions consistent with the dorsal caudate, ventral striatum, and dorsal caudal putamen could be identified in each subject. Further, correlation maps associated with putative divisions were consistent with their presumed connectivity. These findings suggest that, as in the cerebral cortex, subcortical divisions can be identified in individuals using rs-fcMRI. Developing and validating these methods should improve the study of brain structure and function, both typical and atypical, by allowing for more precise comparison across individuals. Frontiers Research Foundation 2010-06-10 /pmc/articles/PMC2892946/ /pubmed/20589235 http://dx.doi.org/10.3389/fnsys.2010.00018 Text en Copyright © 2010 Barnes, Cohen, Power, Nelson, Dosenbach, Miezin, Petersen and Schlaggar. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
spellingShingle | Neuroscience Barnes, Kelly Anne Cohen, Alexander L. Power, Jonathan D. Nelson, Steven M. Dosenbach, Yannic B. L. Miezin, Francis M. Petersen, Steven E. Schlaggar, Bradley L. Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title | Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title_full | Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title_fullStr | Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title_full_unstemmed | Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title_short | Identifying Basal Ganglia Divisions in Individuals Using Resting-State Functional Connectivity MRI |
title_sort | identifying basal ganglia divisions in individuals using resting-state functional connectivity mri |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892946/ https://www.ncbi.nlm.nih.gov/pubmed/20589235 http://dx.doi.org/10.3389/fnsys.2010.00018 |
work_keys_str_mv | AT barneskellyanne identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT cohenalexanderl identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT powerjonathand identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT nelsonstevenm identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT dosenbachyannicbl identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT miezinfrancism identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT petersenstevene identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri AT schlaggarbradleyl identifyingbasalgangliadivisionsinindividualsusingrestingstatefunctionalconnectivitymri |