Cargando…
Mechanical ventilation and the total artificial heart: optimal ventilator trigger to avoid post-operative autocycling - a case series and literature review
Many patients with end-stage cardiomyopathy are now being implanted with Total Artificial Hearts (TAHs). We have observed individual cases of post-operative mechanical ventilator autocycling with a flow trigger, and subsequent loss of autocycling after switching to a pressure trigger. These observat...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893170/ https://www.ncbi.nlm.nih.gov/pubmed/20478064 http://dx.doi.org/10.1186/1749-8090-5-39 |
Sumario: | Many patients with end-stage cardiomyopathy are now being implanted with Total Artificial Hearts (TAHs). We have observed individual cases of post-operative mechanical ventilator autocycling with a flow trigger, and subsequent loss of autocycling after switching to a pressure trigger. These observations prompted us to do a retrospective review of all TAH devices placed at our institution between August 2007 and May 2009. We found that in the immediate post-operative period following TAH placement, autocycling was present in 50% (5/10) of cases. There was immediate cessation of autocycling in all patients after being changed from a flow trigger of 2 L/minute to a pressure trigger of 2 cm H(2)O. The autocycling group was found to have significantly higher CVP values than the non-autocycling group (P = 0.012). Our data suggest that mechanical ventilator autocycling may be resolved or prevented by the use of a pressure trigger rather than a flow trigger setting in patients with TAHs who require mechanical ventilation. |
---|