Cargando…
Network Scaling Effects in Graph Analytic Studies of Human Resting-State fMRI Data
Graph analysis has become an increasingly popular tool for characterizing topological properties of brain connectivity networks. Within this approach, the brain is modeled as a graph comprising N nodes connected by M edges. In functional magnetic resonance imaging (fMRI) studies, the nodes typically...
Autores principales: | Fornito, Alex, Zalesky, Andrew, Bullmore, Edward T. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893703/ https://www.ncbi.nlm.nih.gov/pubmed/20592949 http://dx.doi.org/10.3389/fnsys.2010.00022 |
Ejemplares similares
-
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Reproducibility of Graph Metrics in fMRI Networks
por: Telesford, Qawi K., et al.
Publicado: (2010) -
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI
por: Gargouri, Fatma, et al.
Publicado: (2018) -
Vigilance Effects in Resting-State fMRI
por: Liu, Thomas T., et al.
Publicado: (2020) -
Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data
por: Aurich, Nathassia K., et al.
Publicado: (2015)