Cargando…

Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles

We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T(3/2)-law, indicating the existence of magnetic anisotropic energy. The results may be understoo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shih, Po-Hsun, Wu, ShengYun
Formato: Texto
Lenguaje:English
Publicado: Springer 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893896/
https://www.ncbi.nlm.nih.gov/pubmed/20652127
http://dx.doi.org/10.1007/s11671-009-9438-z
_version_ 1782183089376591872
author Shih, Po-Hsun
Wu, ShengYun
author_facet Shih, Po-Hsun
Wu, ShengYun
author_sort Shih, Po-Hsun
collection PubMed
description We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T(3/2)-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy.
format Text
id pubmed-2893896
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Springer
record_format MEDLINE/PubMed
spelling pubmed-28938962010-07-21 Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles Shih, Po-Hsun Wu, ShengYun Nanoscale Res Lett Nano Express We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T(3/2)-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy. Springer 2009-09-22 /pmc/articles/PMC2893896/ /pubmed/20652127 http://dx.doi.org/10.1007/s11671-009-9438-z Text en Copyright ©2009 to the authors
spellingShingle Nano Express
Shih, Po-Hsun
Wu, ShengYun
Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title_full Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title_fullStr Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title_full_unstemmed Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title_short Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles
title_sort magnetic anisotropic energy gap and strain effect in au nanoparticles
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893896/
https://www.ncbi.nlm.nih.gov/pubmed/20652127
http://dx.doi.org/10.1007/s11671-009-9438-z
work_keys_str_mv AT shihpohsun magneticanisotropicenergygapandstraineffectinaunanoparticles
AT wushengyun magneticanisotropicenergygapandstraineffectinaunanoparticles