Cargando…
Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes
Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs) were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, bu...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894358/ https://www.ncbi.nlm.nih.gov/pubmed/20596289 http://dx.doi.org/10.1007/s11671-009-9277-y |
_version_ | 1782183183681323008 |
---|---|
author | Tang, Dongsheng Wang, Yong Yuan, Huajun Ci, Lijie Zhou, Weiya Xie, Sishen |
author_facet | Tang, Dongsheng Wang, Yong Yuan, Huajun Ci, Lijie Zhou, Weiya Xie, Sishen |
author_sort | Tang, Dongsheng |
collection | PubMed |
description | Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs) were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes. |
format | Text |
id | pubmed-2894358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-28943582010-06-30 Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes Tang, Dongsheng Wang, Yong Yuan, Huajun Ci, Lijie Zhou, Weiya Xie, Sishen Nanoscale Res Lett Nano Express Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs) were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes. Springer 2009-02-27 /pmc/articles/PMC2894358/ /pubmed/20596289 http://dx.doi.org/10.1007/s11671-009-9277-y Text en Copyright ©2009 to the authors |
spellingShingle | Nano Express Tang, Dongsheng Wang, Yong Yuan, Huajun Ci, Lijie Zhou, Weiya Xie, Sishen Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title | Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title_full | Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title_fullStr | Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title_full_unstemmed | Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title_short | Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes |
title_sort | multi-stable conductance states in metallic double-walled carbon nanotubes |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894358/ https://www.ncbi.nlm.nih.gov/pubmed/20596289 http://dx.doi.org/10.1007/s11671-009-9277-y |
work_keys_str_mv | AT tangdongsheng multistableconductancestatesinmetallicdoublewalledcarbonnanotubes AT wangyong multistableconductancestatesinmetallicdoublewalledcarbonnanotubes AT yuanhuajun multistableconductancestatesinmetallicdoublewalledcarbonnanotubes AT cilijie multistableconductancestatesinmetallicdoublewalledcarbonnanotubes AT zhouweiya multistableconductancestatesinmetallicdoublewalledcarbonnanotubes AT xiesishen multistableconductancestatesinmetallicdoublewalledcarbonnanotubes |