Cargando…
A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever
BACKGROUND: In infectious disease surveillance, when the laboratory confirmation of the cases is time-consuming, there is often a time lag between the number of suspect cases and the number of confirmed cases. This study proposes a dynamic statistical model to estimate the daily number of new cases...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894833/ https://www.ncbi.nlm.nih.gov/pubmed/20504379 http://dx.doi.org/10.1186/1471-2334-10-136 |
_version_ | 1782183222531063808 |
---|---|
author | Chuang, Pei-Hung Chuang, Jen-Hsiang Lin, I-Feng |
author_facet | Chuang, Pei-Hung Chuang, Jen-Hsiang Lin, I-Feng |
author_sort | Chuang, Pei-Hung |
collection | PubMed |
description | BACKGROUND: In infectious disease surveillance, when the laboratory confirmation of the cases is time-consuming, there is often a time lag between the number of suspect cases and the number of confirmed cases. This study proposes a dynamic statistical model to estimate the daily number of new cases and the daily cumulative number of infected cases, which was then applied to historic dengue fever data. METHODS: The duration between the date of disease onset and date of laboratory confirmation was assumed to follow a gamma distribution or a nonparametric distribution. A conditional probability of a case being a real case among the unconfirmed cases on a given date was then calculated. This probability along with the observed confirmed cases was integrated to estimate the daily number of new cases and the cumulative number of infected cases. RESULTS: The distribution of the onset-to-confirmation time for the positive cases was different from that of the negative cases. The daily new cases and cumulative epidemic curves estimated by the proposed method have a lower absolute relative bias than the values estimated solely based on the available daily-confirmed cases. CONCLUSION: The proposed method provides a more accurate real-time estimation of the daily new cases and daily cumulative number of infected cases. The model makes use of the most recent "moving window" of information relative to suspect cases and dynamically updates the parameters. The proposed method will be useful for the real-time evaluation of a disease outbreak when case classification requires a time-consuming laboratory process to identify a confirmed case. |
format | Text |
id | pubmed-2894833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28948332010-07-01 A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever Chuang, Pei-Hung Chuang, Jen-Hsiang Lin, I-Feng BMC Infect Dis Research Article BACKGROUND: In infectious disease surveillance, when the laboratory confirmation of the cases is time-consuming, there is often a time lag between the number of suspect cases and the number of confirmed cases. This study proposes a dynamic statistical model to estimate the daily number of new cases and the daily cumulative number of infected cases, which was then applied to historic dengue fever data. METHODS: The duration between the date of disease onset and date of laboratory confirmation was assumed to follow a gamma distribution or a nonparametric distribution. A conditional probability of a case being a real case among the unconfirmed cases on a given date was then calculated. This probability along with the observed confirmed cases was integrated to estimate the daily number of new cases and the cumulative number of infected cases. RESULTS: The distribution of the onset-to-confirmation time for the positive cases was different from that of the negative cases. The daily new cases and cumulative epidemic curves estimated by the proposed method have a lower absolute relative bias than the values estimated solely based on the available daily-confirmed cases. CONCLUSION: The proposed method provides a more accurate real-time estimation of the daily new cases and daily cumulative number of infected cases. The model makes use of the most recent "moving window" of information relative to suspect cases and dynamically updates the parameters. The proposed method will be useful for the real-time evaluation of a disease outbreak when case classification requires a time-consuming laboratory process to identify a confirmed case. BioMed Central 2010-05-27 /pmc/articles/PMC2894833/ /pubmed/20504379 http://dx.doi.org/10.1186/1471-2334-10-136 Text en Copyright ©2010 Chuang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chuang, Pei-Hung Chuang, Jen-Hsiang Lin, I-Feng A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title | A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title_full | A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title_fullStr | A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title_full_unstemmed | A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title_short | A dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
title_sort | dynamic estimation of the daily cumulative cases during infectious disease surveillance: application to dengue fever |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894833/ https://www.ncbi.nlm.nih.gov/pubmed/20504379 http://dx.doi.org/10.1186/1471-2334-10-136 |
work_keys_str_mv | AT chuangpeihung adynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever AT chuangjenhsiang adynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever AT linifeng adynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever AT chuangpeihung dynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever AT chuangjenhsiang dynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever AT linifeng dynamicestimationofthedailycumulativecasesduringinfectiousdiseasesurveillanceapplicationtodenguefever |