Cargando…
Recovery of mechano-electrical transduction in rat cochlear hair bundles after postnatal destruction of the stereociliar cross-links
Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the f...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894906/ https://www.ncbi.nlm.nih.gov/pubmed/20356889 http://dx.doi.org/10.1098/rspb.2010.0219 |
Sumario: | Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the functionality of the MET channels by recording the entry of fluorescent dye, FM1-43, into stereocilia. Preparations were taken from rats on their day of birth (P0) or 1–4 days later (P1–P4). Hair bundles developed from the base to the apex and from the inner to outer OHC rows. MET channel responses were detected in apical coil OHCs on P1. To study the possible recovery of MET after disrupting the cross-links, the same investigations were performed after the application of Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and allowing the treated samples to recover in culture medium for 0–20 h. We found that the structure and function were abolished by BAPTA. In P0–P1 samples, structural recovery was complete and the open probability of MET channels reached control values. In P3–P4 samples, complete recovery only occurred in OHCs of the outermost row. Although our results demonstrate an enormous recovery potential of OHCs in the postnatal period, the structural component restricts the potential for therapy in patients. |
---|