Cargando…

Single-dose versus multiple-dose antibiotic prophylaxis for the surgical treatment of closed fractures: A cost-effectiveness analysis

Background and purpose Recent meta-analyses have suggested similar wound infection rates when using single- or multiple-dose antibiotic prophylaxis in the operative management of closed long bone fractures. In order to assist clinicians in choosing the optimal prophylaxis strategy, we performed a co...

Descripción completa

Detalles Bibliográficos
Autores principales: Slobogean, Gerard P, O'Brien, Peter J, Brauer, Carmen A
Formato: Texto
Lenguaje:English
Publicado: Informa Healthcare 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895348/
https://www.ncbi.nlm.nih.gov/pubmed/20148647
http://dx.doi.org/10.3109/17453671003587119
Descripción
Sumario:Background and purpose Recent meta-analyses have suggested similar wound infection rates when using single- or multiple-dose antibiotic prophylaxis in the operative management of closed long bone fractures. In order to assist clinicians in choosing the optimal prophylaxis strategy, we performed a cost-effectiveness analysis comparing single- and multiple-dose prophylaxis. Methods A cost-effectiveness analysis comparing the two prophylactic strategies was performed using time horizons of 60 days and 1 year. Infection probabilities, costs, and quality-adjusted life days (QALD) for each strategy were estimated from the literature. All costs were reported in 2007 US dollars. A base case analysis was performed for the surgical treatment of a closed ankle fracture. Sensitivity analysis was performed for all variables, including probabilistic sensitivity analysis using Monte Carlo simulation. Results Single-dose prophylaxis results in lower cost and a similar amount of quality-adjusted life days gained. The single-dose strategy had an average cost of $2,576 for an average gain of 272 QALD. Multiple doses had an average cost of $2,596 for 272 QALD gained. These results are sensitive to the incidence of surgical site infection and deep wound infection for the single-dose treatment arm. Probabilistic sensitivity analysis using all model variables also demonstrated preference for the single-dose strategy. Interpretation Assuming similar infection rates between the prophylactic groups, our results suggest that single-dose prophylaxis is slightly more cost-effective than multiple-dose regimens for the treatment of closed fractures. Extensive sensitivity analysis demonstrates these results to be stable using published meta-analysis infection rates.