Cargando…
An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings
BACKGROUND: As computational power improves, the application of more advanced machine learning techniques to the analysis of large genome-wide association (GWA) datasets becomes possible. While most traditional statistical methods can only elucidate main effects of genetic variants on risk for disea...
Autores principales: | Goldstein, Benjamin A, Hubbard, Alan E, Cutler, Adele, Barcellos, Lisa F |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896336/ https://www.ncbi.nlm.nih.gov/pubmed/20546594 http://dx.doi.org/10.1186/1471-2156-11-49 |
Ejemplares similares
-
Spillover effects in epidemiology: parameters, study designs and methodological considerations
por: Benjamin-Chung, Jade, et al.
Publicado: (2018) -
PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets
por: Pradier, Léa, et al.
Publicado: (2021) -
Genome wide association analysis of the 16th QTL- MAS Workshop dataset using the Random Forest machine learning approach
por: Minozzi, Giulietta, et al.
Publicado: (2014) -
Translational tests involving non-reward: methodological considerations
por: Phillips, Benjamin U., et al.
Publicado: (2018) -
Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications
por: Lourenço, Célia, et al.
Publicado: (2014)