Cargando…
Inferring predominant pathways in cellular models of breast cancer using limited sample proteomic profiling
BACKGROUND: Molecularly targeted drugs inhibit aberrant signaling within oncogenic pathways. Identifying the predominant pathways at work within a tumor is a key step towards tailoring therapies to the patient. Clinical samples pose significant challenges for proteomic profiling, an attractive appro...
Autores principales: | Kulkarni, Yogesh M, Suarez, Vivian, Klinke, David J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896362/ https://www.ncbi.nlm.nih.gov/pubmed/20550684 http://dx.doi.org/10.1186/1471-2407-10-291 |
Ejemplares similares
-
Protein-based identification of quantitative trait loci associated with malignant transformation in two HER2+ cellular models of breast cancer
por: Kulkarni, Yogesh M, et al.
Publicado: (2012) -
An empirical Bayesian approach for model-based inference of cellular signaling networks
por: Klinke, David J
Publicado: (2009) -
Inferring perturbation profiles of cancer samples
por: Pirkl, Martin, et al.
Publicado: (2021) -
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
por: Liu, Hui, et al.
Publicado: (2016) -
DeepPep: Deep proteome inference from peptide profiles
por: Kim, Minseung, et al.
Publicado: (2017)