Cargando…
A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks
An ataxia-telangiectasia mutated (ATM)-dependent DNA damage signal is amplified through the interaction of various factors, which are recruited to the chromatin regions with DNA double-strand breaks. Spatial and temporal regulation of such factors is analysed by fluorescence microscopy in combinatio...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896537/ https://www.ncbi.nlm.nih.gov/pubmed/20385602 http://dx.doi.org/10.1093/nar/gkq226 |
Sumario: | An ataxia-telangiectasia mutated (ATM)-dependent DNA damage signal is amplified through the interaction of various factors, which are recruited to the chromatin regions with DNA double-strand breaks. Spatial and temporal regulation of such factors is analysed by fluorescence microscopy in combination with laser micro-irradiation. Here we describe a novel and simple technique for micro-irradiation that does not require a laser source. Cells were labelled with BrdU for 48–72 h, covered with porous polycarbonate membranes, and exposed to UVC. All BrdU-labelled cells showed localized foci of phosphorylated ATM, phosphorylated histone H2AX, MDC1 and 53BP1 upon irradiation, showing that these foci were induced irrespective of the cell-cycle phase. They were also detectable in nucleotide excision repair-defective XPA cells labelled with BrdU, indicating that the foci did not reflect an excision repair-related process. Furthermore, an ATM-specific inhibitor significantly attenuated the foci formation, and disappearance of the foci was significantly abrogated in non-homologous end-joining-defective cells. Thus, it can be concluded that micro-irradiation generated DNA double-strand breaks in BrdU-sensitized cells. The present technique should accelerate research in the fields of DNA damage response, DNA repair and DNA recombination, as it provides more chances to perform micro-irradiation experiments without any specific equipment. |
---|