Cargando…

Stability of Ranked Gene Lists in Large Microarray Analysis Studies

This paper presents an empirical study that aims to explain the relationship between the number of samples and stability of different gene selection techniques for microarray datasets. Unlike other similar studies where number of genes in a ranked gene list is variable, this study uses an alternativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Stiglic, Gregor, Kokol, Peter
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896709/
https://www.ncbi.nlm.nih.gov/pubmed/20625502
http://dx.doi.org/10.1155/2010/616358
Descripción
Sumario:This paper presents an empirical study that aims to explain the relationship between the number of samples and stability of different gene selection techniques for microarray datasets. Unlike other similar studies where number of genes in a ranked gene list is variable, this study uses an alternative approach where stability is observed at different number of samples that are used for gene selection. Three different metrics of stability, including a novel metric in bioinformatics, were used to estimate the stability of the ranked gene lists. Results of this study demonstrate that the univariate selection methods produce significantly more stable ranked gene lists than the multivariate selection methods used in this study. More specifically, thousands of samples are needed for these multivariate selection methods to achieve the same level of stability any given univariate selection method can achieve with only hundreds.