Cargando…

Clinical and radiological evaluation of Trabecular Metal and the Smith–Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up

A prospective, randomized, controlled study was carried out to compare the radiological and clinical outcomes after anterior cervical decompression and fusion (ACDF) with Trabecular Metal™ (TM) to the traditional Smith–Robinson (SR) procedure with autograft. The clinical results of cervical fusion w...

Descripción completa

Detalles Bibliográficos
Autores principales: Löfgren, Håkan, Engquist, M., Hoffmann, P., Sigstedt, B., Vavruch, L.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899760/
https://www.ncbi.nlm.nih.gov/pubmed/19763634
http://dx.doi.org/10.1007/s00586-009-1161-z
Descripción
Sumario:A prospective, randomized, controlled study was carried out to compare the radiological and clinical outcomes after anterior cervical decompression and fusion (ACDF) with Trabecular Metal™ (TM) to the traditional Smith–Robinson (SR) procedure with autograft. The clinical results of cervical fusion with autograft from the iliac crest are typically satisfactory, but implications from the donor site are frequently reported. Alternative materials for cervical body interfusion have shown lower fusion rates. Trabecular Metal is a porous tantalum biomaterial with structure and mechanical properties similar to that of trabecular bone and with proven osteoconductivity. As much as 80 consecutive patients planned for ACDF were randomized for fusion with either TM or tricortical autograft from the iliac crest (SR) after discectomy and decompression. Digitized plain radiographic images of 78 (98%) patients were obtained preoperatively and at 2-year follow-up and were subsequently evaluated by two senior radiologists. Fusion/non-fusion was classified by visual evaluation of the A–P and lateral views in forced flexion/extension of the cervical spine and by measuring the mobility between the fused vertebrae. MRI of 20 TM cases at 2 years was successfully used to assess the decompression of the neural structures, but was not helpful in determining fusion/non-fusion. Pain intensity in the neck, arms and pelvis/hip were rated by patients on a visual analog scale (VAS) and neck function was rated using the Neck Disability Index (NDI) the day before surgery and 4, 12 and 24 months postoperatively. Follow-ups at 12 and 24 months were performed by an unbiased observer, when patients also assessed their global outcome. Fusion rate in the SR group was 92%, and in the TM group 69% (P < 0.05). The accuracy of the measurements was calculated to be 2.4°. Operating time was shorter for fusion with TM compared with autograft; mean times were 100 min (SD 18) and 123 min (SD 23), respectively (P = 0.001). The patients’ global assessments of their neck and arm symptoms 2 years postoperatively for the TM group were rated as 79% much better or better after fusion with TM and 75% using autograft. Pain scores and NDI scores were significantly improved in both groups when compared with baseline at all follow-ups, except for neck pain at 1 year for the TM group. There was no statistically significant difference in clinical outcomes between fusion techniques or between patients who appeared radiologically fused or non-fused. There was no difference in pelvic/hip pain between patients operated on with or without autograft. In our study, Trabecular Metal showed a lower fusion rate than the Smith–Robinson technique with autograft after single-level anterior cervical fusion without plating. There was no difference in clinical outcomes between the groups. The operative time was shorter with Trabecular Metal implants.