Cargando…
Resolution of cell-mediated airways diseases
"Inflammation resolution" has of late become a topical research area. Activation of resolution phase mechanisms, involving select post-transcriptional regulons, transcription factors, 'autacoids', and cell phenotypes, is now considered to resolve inflammatory diseases. Critical t...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900258/ https://www.ncbi.nlm.nih.gov/pubmed/20540713 http://dx.doi.org/10.1186/1465-9921-11-75 |
_version_ | 1782183611171078144 |
---|---|
author | Persson, Carl G Uller, Lena |
author_facet | Persson, Carl G Uller, Lena |
author_sort | Persson, Carl G |
collection | PubMed |
description | "Inflammation resolution" has of late become a topical research area. Activation of resolution phase mechanisms, involving select post-transcriptional regulons, transcription factors, 'autacoids', and cell phenotypes, is now considered to resolve inflammatory diseases. Critical to this discourse on resolution is the elimination of inflammatory cells through apoptosis and phagocytosis. For major inflammatory diseases such as asthma and COPD we propose an alternative path to apoptosis for cell elimination. We argue that transepithelial migration of airway wall leukocytes, followed by mucociliary clearance, efficiently and non-injuriously eliminates pro-inflammatory cells from diseased airway tissues. First, it seems clear that numerous infiltrated granulocytes and lymphocytes can be speedily transmitted into the airway lumen without harming the epithelial barrier. Then there are a wide range of 'unexpected' findings demonstrating that clinical improvement of asthma and COPD is not only associated with decreasing numbers of airway wall inflammatory cells but also with increasing numbers of these cells in the airway lumen. Finally, effects of inhibition of transepithelial migration support the present hypothesis. Airway inflammatory processes have thus been much aggravated when transepithelial exit of leukocytes has been inhibited. In conclusion, the present hypothesis highlights risks involved in drug-induced inhibition of transepithelial migration of airway wall leukocytes. It helps interpretation of common airway lumen data, and suggests approaches to treat cell-mediated airway inflammation. |
format | Text |
id | pubmed-2900258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29002582010-07-09 Resolution of cell-mediated airways diseases Persson, Carl G Uller, Lena Respir Res Review "Inflammation resolution" has of late become a topical research area. Activation of resolution phase mechanisms, involving select post-transcriptional regulons, transcription factors, 'autacoids', and cell phenotypes, is now considered to resolve inflammatory diseases. Critical to this discourse on resolution is the elimination of inflammatory cells through apoptosis and phagocytosis. For major inflammatory diseases such as asthma and COPD we propose an alternative path to apoptosis for cell elimination. We argue that transepithelial migration of airway wall leukocytes, followed by mucociliary clearance, efficiently and non-injuriously eliminates pro-inflammatory cells from diseased airway tissues. First, it seems clear that numerous infiltrated granulocytes and lymphocytes can be speedily transmitted into the airway lumen without harming the epithelial barrier. Then there are a wide range of 'unexpected' findings demonstrating that clinical improvement of asthma and COPD is not only associated with decreasing numbers of airway wall inflammatory cells but also with increasing numbers of these cells in the airway lumen. Finally, effects of inhibition of transepithelial migration support the present hypothesis. Airway inflammatory processes have thus been much aggravated when transepithelial exit of leukocytes has been inhibited. In conclusion, the present hypothesis highlights risks involved in drug-induced inhibition of transepithelial migration of airway wall leukocytes. It helps interpretation of common airway lumen data, and suggests approaches to treat cell-mediated airway inflammation. BioMed Central 2010 2010-06-11 /pmc/articles/PMC2900258/ /pubmed/20540713 http://dx.doi.org/10.1186/1465-9921-11-75 Text en Copyright ©2010 Persson and Uller; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Persson, Carl G Uller, Lena Resolution of cell-mediated airways diseases |
title | Resolution of cell-mediated airways diseases |
title_full | Resolution of cell-mediated airways diseases |
title_fullStr | Resolution of cell-mediated airways diseases |
title_full_unstemmed | Resolution of cell-mediated airways diseases |
title_short | Resolution of cell-mediated airways diseases |
title_sort | resolution of cell-mediated airways diseases |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900258/ https://www.ncbi.nlm.nih.gov/pubmed/20540713 http://dx.doi.org/10.1186/1465-9921-11-75 |
work_keys_str_mv | AT perssoncarlg resolutionofcellmediatedairwaysdiseases AT ullerlena resolutionofcellmediatedairwaysdiseases |