Cargando…
Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera
BACKGROUND: Hyaluronic acid is one of the biopolymers most commonly used by the pharmaceutical industry. Thus, there is an increasing number of recent works that deal with the production of microbial hyaluronic acid. Different properties and characteristics of the fermentation process have been exte...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901256/ https://www.ncbi.nlm.nih.gov/pubmed/20546615 http://dx.doi.org/10.1186/1475-2859-9-46 |
Sumario: | BACKGROUND: Hyaluronic acid is one of the biopolymers most commonly used by the pharmaceutical industry. Thus, there is an increasing number of recent works that deal with the production of microbial hyaluronic acid. Different properties and characteristics of the fermentation process have been extensively optimised; however, new carbon and protein sources obtained from by-products or cheap substrates have not yet been studied. RESULTS: Mussel processing wastewater (MPW) was used as a sugar source and tuna peptone (TP) from viscera residue as a protein substrate for the production of hyaluronic acid (HA), biomass and lactic acid (LA) by Streptococcus zooepidemicus in batch fermentation. Commercial medium formulated with glucose and tryptone was used as the control. The parametric estimations obtained from logistic equations and maintenance energy model utilized for modelling experimental data were compared in commercial and low-cost media. Complete residual media achieved high production (3.67, 2.46 and 30.83 g l(-1 )of biomass, HA and LA respectively) and a high molecular weight of HA (approximately 2500 kDa). A simple economic analysis highlighted the potential viability of this marine media for reducing the production costs by more than 50%. CONCLUSIONS: The experimental data and mathematical descriptions reported in this article demonstrate the potential of media formulated with MPW and TP to be used as substrates for HA production by S. zooepidemicus. Furthermore, the proposed equations accurately simulated the experimental profiles and generated a set of interesting parameters that can be used to compare the different bacterial cultures. To the best of our knowledge, this is the first work in which a culture media formed by marine by-products has been successfully used for microbial HA production. |
---|