Cargando…
Database of exact tandem repeats in the Zebrafish genome
BACKGROUND: Sequencing of the approximately 1.7 billion bases of the zebrafish genome is currently underway. To date, few high resolution genetic maps exist for the zebrafish genome, based mainly on single nucleotide polymorphisms (SNPs) and short microsatellite repeats. The desire to construct a hi...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901318/ https://www.ncbi.nlm.nih.gov/pubmed/20515480 http://dx.doi.org/10.1186/1471-2164-11-347 |
Sumario: | BACKGROUND: Sequencing of the approximately 1.7 billion bases of the zebrafish genome is currently underway. To date, few high resolution genetic maps exist for the zebrafish genome, based mainly on single nucleotide polymorphisms (SNPs) and short microsatellite repeats. The desire to construct a higher resolution genetic map led to the construction of a database of tandemly repeating elements within the zebrafish Zv8 assembly. DESCRIPTION: Exact tandem repeats with a repeat length of at least three bases and a copy number of at least 10 were reported. Repeats with a total length of 250 or fewer bases and their flanking regions were masked for known vertebrate repeats. Optimal primer pairs were computationally designed in the regions flanking the detected repeats. This database of exact tandem repeats can then be used as a resource by molecular biologists with interests in experimentally testing VNTRs within a zebrafish population. CONCLUSIONS: A total of 116,915 repeats with a base length of at least three nucleotides were detected. The longest of these was a 54-base repeat with fourteen tandem copies. A significant number of repeats with a base length of 18, 24, 27 and 30 were detected, many with potentially novel proline-rich coding regions. Detection of exact tandem repeats in the zebrafish genome leads to a wealth of information regarding potential polymorphic sites for VNTRs. The association of many of these repeats with potentially novel yet similar coding regions yields an exciting potential for disease associated genes. A web interface for querying repeats is available at http://bioinformatics.louisville.edu/zebrafish/. This portal allows for users to search for a repeats of a selected base size from any valid specified region within the 25 linkage groups. |
---|