Cargando…

Computational assessment of the effects of a pulsatile pump on toxin removal in blood purification

BACKGROUND: For blood purification systems using a semipermeable membrane, the convective mass transfer by ultrafiltration plays an important role in toxin removal. The increase in the ultrafiltration rate can improve the toxin removal efficiency of the device, ultimately reducing treatment time and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Ki Moo, Shim, Eun Bo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901332/
https://www.ncbi.nlm.nih.gov/pubmed/20569462
http://dx.doi.org/10.1186/1475-925X-9-31
Descripción
Sumario:BACKGROUND: For blood purification systems using a semipermeable membrane, the convective mass transfer by ultrafiltration plays an important role in toxin removal. The increase in the ultrafiltration rate can improve the toxin removal efficiency of the device, ultimately reducing treatment time and cost. In this study, we assessed the effects of pulsatile flow on the efficiency of the convective toxin removal in blood purification systems using theoretical methods. METHODS: We devised a new mathematical lumped model to assess the toxin removal efficiency of blood purification systems in patients, integrating the mass transfer model for a human body with a dialyser. The human body model consists of a three-compartment model of body fluid dynamics and a two-compartment model of body solute kinetics. We simulated three types of blood purification therapy with the model, hemofiltration, hemodiafiltration, and high-flux dialysis, and compared the simulation results in terms of toxin (urea and beta-2 microglobulin) clearance and the treatment dose delivered under conditions of pulsatile and non-pulsatile pumping. In vivo experiments were also performed to verify the model results. RESULTS: Simulation results revealed that pulsatile flow improved the convective clearance of the dialyser and delivered treatment dose for all three types of therapy. Compared with the non-pulsatile pumping method, the increases in the clearance of urea and beta-2 microglobulin with pulsatile pumping were highest with hemofiltration treatment (122.7% and 122.7%, respectively), followed by hemodiafiltration (3.6% and 8.3%, respectively), and high-flux dialysis (1.9% and 4.7%, respectively). EKRc and std Kt/V averaged 28% and 23% higher, respectively, in the pulsatile group than in the non-pulsatile group with hemofiltration treatment. CONCLUSIONS: The pulsatile effect was highly advantageous for all of the toxins in the hemofiltration treatment and for β(2)-microglobulin in the hemodiafiltration and high-flux dialysis treatments.