Cargando…

pH-Potentiometric Investigation towards Chelating Tendencies of p-Hydroquinone and Phenol Iminodiacetate Copper(II) Complexes

Copper ions in the active sites of several proteins/enzymes interact with phenols and quinones, and this interaction is associated to the reactivity of the enzymes. In this study the speciation of the Cu(2+) with iminodiacetic phenolate/hydroquinonate ligands has been examined by pH-potentiometry. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Stylianou, Marios, Keramidas, Anastasios D., Drouza, Chryssoula
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901618/
https://www.ncbi.nlm.nih.gov/pubmed/20631835
http://dx.doi.org/10.1155/2010/125717
Descripción
Sumario:Copper ions in the active sites of several proteins/enzymes interact with phenols and quinones, and this interaction is associated to the reactivity of the enzymes. In this study the speciation of the Cu(2+) with iminodiacetic phenolate/hydroquinonate ligands has been examined by pH-potentiometry. The results reveal that the iminodiacetic phenol ligand forms mononuclear complexes with Cu(2+) at acidic and alkaline pHs, and a binuclear O(phenolate)-bridged complex at pH range from 7 to 8.5. The binucleating hydroquinone ligand forms only 2 : 1 metal to ligand complexes in solution. The pK values of the protonation of the phenolate oxygen of the two ligands are reduced about 2 units after complexation with the metal ion and are close to the pK values for the copper-interacting tyrosine phenol oxygen in copper enzymes.