Cargando…
Super-sparse principal component analyses for high-throughput genomic data
BACKGROUND: Principal component analysis (PCA) has gained popularity as a method for the analysis of high-dimensional genomic data. However, it is often difficult to interpret the results because the principal components are linear combinations of all variables, and the coefficients (loadings) are t...
Autores principales: | Lee, Donghwan, Lee, Woojoo, Lee, Youngjo, Pawitan, Yudi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902448/ https://www.ncbi.nlm.nih.gov/pubmed/20525176 http://dx.doi.org/10.1186/1471-2105-11-296 |
Ejemplares similares
-
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017) -
Generalized linear models with random effects: unified analysis via H-likelihood
por: Lee, Youngjo, et al.
Publicado: (2018) -
Generalized linear models with random effects: unified analysis via H-likelihood
por: Lee, Youngjo, et al.
Publicado: (2006) -
CREDO: Highly confident disease-relevant A-to-I RNA-editing discovery in breast cancer
por: Hwang, Woochang, et al.
Publicado: (2019) -
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016)