Cargando…
Beyond rotamers: a generative, probabilistic model of side chains in proteins
BACKGROUND: Accurately covering the conformational space of amino acid side chains is essential for important applications such as protein design, docking and high resolution structure prediction. Today, the most common way to capture this conformational space is through rotamer libraries - discrete...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902450/ https://www.ncbi.nlm.nih.gov/pubmed/20525384 http://dx.doi.org/10.1186/1471-2105-11-306 |
_version_ | 1782183762838159360 |
---|---|
author | Harder, Tim Boomsma, Wouter Paluszewski, Martin Frellsen, Jes Johansson, Kristoffer E Hamelryck, Thomas |
author_facet | Harder, Tim Boomsma, Wouter Paluszewski, Martin Frellsen, Jes Johansson, Kristoffer E Hamelryck, Thomas |
author_sort | Harder, Tim |
collection | PubMed |
description | BACKGROUND: Accurately covering the conformational space of amino acid side chains is essential for important applications such as protein design, docking and high resolution structure prediction. Today, the most common way to capture this conformational space is through rotamer libraries - discrete collections of side chain conformations derived from experimentally determined protein structures. The discretization can be exploited to efficiently search the conformational space. However, discretizing this naturally continuous space comes at the cost of losing detailed information that is crucial for certain applications. For example, rigorously combining rotamers with physical force fields is associated with numerous problems. RESULTS: In this work we present BASILISK: a generative, probabilistic model of the conformational space of side chains that makes it possible to sample in continuous space. In addition, sampling can be conditional upon the protein's detailed backbone conformation, again in continuous space - without involving discretization. CONCLUSIONS: A careful analysis of the model and a comparison with various rotamer libraries indicates that the model forms an excellent, fully continuous model of side chain conformational space. We also illustrate how the model can be used for rigorous, unbiased sampling with a physical force field, and how it improves side chain prediction when used as a pseudo-energy term. In conclusion, BASILISK is an important step forward on the way to a rigorous probabilistic description of protein structure in continuous space and in atomic detail. |
format | Text |
id | pubmed-2902450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29024502010-07-13 Beyond rotamers: a generative, probabilistic model of side chains in proteins Harder, Tim Boomsma, Wouter Paluszewski, Martin Frellsen, Jes Johansson, Kristoffer E Hamelryck, Thomas BMC Bioinformatics Research article BACKGROUND: Accurately covering the conformational space of amino acid side chains is essential for important applications such as protein design, docking and high resolution structure prediction. Today, the most common way to capture this conformational space is through rotamer libraries - discrete collections of side chain conformations derived from experimentally determined protein structures. The discretization can be exploited to efficiently search the conformational space. However, discretizing this naturally continuous space comes at the cost of losing detailed information that is crucial for certain applications. For example, rigorously combining rotamers with physical force fields is associated with numerous problems. RESULTS: In this work we present BASILISK: a generative, probabilistic model of the conformational space of side chains that makes it possible to sample in continuous space. In addition, sampling can be conditional upon the protein's detailed backbone conformation, again in continuous space - without involving discretization. CONCLUSIONS: A careful analysis of the model and a comparison with various rotamer libraries indicates that the model forms an excellent, fully continuous model of side chain conformational space. We also illustrate how the model can be used for rigorous, unbiased sampling with a physical force field, and how it improves side chain prediction when used as a pseudo-energy term. In conclusion, BASILISK is an important step forward on the way to a rigorous probabilistic description of protein structure in continuous space and in atomic detail. BioMed Central 2010-06-05 /pmc/articles/PMC2902450/ /pubmed/20525384 http://dx.doi.org/10.1186/1471-2105-11-306 Text en Copyright ©2010 Harder et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Harder, Tim Boomsma, Wouter Paluszewski, Martin Frellsen, Jes Johansson, Kristoffer E Hamelryck, Thomas Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title | Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title_full | Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title_fullStr | Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title_full_unstemmed | Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title_short | Beyond rotamers: a generative, probabilistic model of side chains in proteins |
title_sort | beyond rotamers: a generative, probabilistic model of side chains in proteins |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902450/ https://www.ncbi.nlm.nih.gov/pubmed/20525384 http://dx.doi.org/10.1186/1471-2105-11-306 |
work_keys_str_mv | AT hardertim beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins AT boomsmawouter beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins AT paluszewskimartin beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins AT frellsenjes beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins AT johanssonkristoffere beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins AT hamelryckthomas beyondrotamersagenerativeprobabilisticmodelofsidechainsinproteins |