Cargando…
Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset
Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902524/ https://www.ncbi.nlm.nih.gov/pubmed/20634963 http://dx.doi.org/10.1371/journal.pone.0011545 |
_version_ | 1782183779595452416 |
---|---|
author | Lindenmeyer, Maja T. Eichinger, Felix Sen, Kontheari Anders, Hans-Joachim Edenhofer, Ilka Mattinzoli, Deborah Kretzler, Matthias Rastaldi, Maria P. Cohen, Clemens D. |
author_facet | Lindenmeyer, Maja T. Eichinger, Felix Sen, Kontheari Anders, Hans-Joachim Edenhofer, Ilka Mattinzoli, Deborah Kretzler, Matthias Rastaldi, Maria P. Cohen, Clemens D. |
author_sort | Lindenmeyer, Maja T. |
collection | PubMed |
description | Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with ‘a priori’ known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found. In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specifc gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease. |
format | Text |
id | pubmed-2902524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29025242010-07-15 Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset Lindenmeyer, Maja T. Eichinger, Felix Sen, Kontheari Anders, Hans-Joachim Edenhofer, Ilka Mattinzoli, Deborah Kretzler, Matthias Rastaldi, Maria P. Cohen, Clemens D. PLoS One Research Article Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with ‘a priori’ known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found. In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specifc gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease. Public Library of Science 2010-07-12 /pmc/articles/PMC2902524/ /pubmed/20634963 http://dx.doi.org/10.1371/journal.pone.0011545 Text en Lindenmeyer et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lindenmeyer, Maja T. Eichinger, Felix Sen, Kontheari Anders, Hans-Joachim Edenhofer, Ilka Mattinzoli, Deborah Kretzler, Matthias Rastaldi, Maria P. Cohen, Clemens D. Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title | Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title_full | Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title_fullStr | Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title_full_unstemmed | Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title_short | Systematic Analysis of a Novel Human Renal Glomerulus-Enriched Gene Expression Dataset |
title_sort | systematic analysis of a novel human renal glomerulus-enriched gene expression dataset |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902524/ https://www.ncbi.nlm.nih.gov/pubmed/20634963 http://dx.doi.org/10.1371/journal.pone.0011545 |
work_keys_str_mv | AT lindenmeyermajat systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT eichingerfelix systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT senkontheari systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT andershansjoachim systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT edenhoferilka systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT mattinzolideborah systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT kretzlermatthias systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT rastaldimariap systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset AT cohenclemensd systematicanalysisofanovelhumanrenalglomerulusenrichedgeneexpressiondataset |