Cargando…
Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902668/ https://www.ncbi.nlm.nih.gov/pubmed/20602360 http://dx.doi.org/10.1002/prot.22761 |
_version_ | 1782183781501763584 |
---|---|
author | Lawrenz, Morgan Wereszczynski, Jeff Amaro, Rommie Walker, Ross Roitberg, Adrian McCammon, J Andrew |
author_facet | Lawrenz, Morgan Wereszczynski, Jeff Amaro, Rommie Walker, Ross Roitberg, Adrian McCammon, J Andrew |
author_sort | Lawrenz, Morgan |
collection | PubMed |
description | The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can “clamp” the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. Proteins 2010. © 2010 Wiley-Liss, Inc. |
format | Text |
id | pubmed-2902668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-29026682011-08-15 Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy Lawrenz, Morgan Wereszczynski, Jeff Amaro, Rommie Walker, Ross Roitberg, Adrian McCammon, J Andrew Proteins Research Articles The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can “clamp” the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. Proteins 2010. © 2010 Wiley-Liss, Inc. Wiley Subscription Services, Inc., A Wiley Company 2010-08-15 2010-03-05 /pmc/articles/PMC2902668/ /pubmed/20602360 http://dx.doi.org/10.1002/prot.22761 Text en Copyright © 2010 Wiley-Liss, Inc. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Research Articles Lawrenz, Morgan Wereszczynski, Jeff Amaro, Rommie Walker, Ross Roitberg, Adrian McCammon, J Andrew Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title | Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title_full | Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title_fullStr | Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title_full_unstemmed | Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title_short | Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy |
title_sort | impact of calcium on n1 influenza neuraminidase dynamics and binding free energy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902668/ https://www.ncbi.nlm.nih.gov/pubmed/20602360 http://dx.doi.org/10.1002/prot.22761 |
work_keys_str_mv | AT lawrenzmorgan impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy AT wereszczynskijeff impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy AT amarorommie impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy AT walkerross impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy AT roitbergadrian impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy AT mccammonjandrew impactofcalciumonn1influenzaneuraminidasedynamicsandbindingfreeenergy |