Cargando…

Probing the Ternary Complexes of Indoleamine and Tryptophan 2,3-Dioxygenases by Cryoreduction EPR and ENDOR Spectroscopy

[Image: see text] We have applied cryoreduction/EPR/ENDOR techniques to characterize the active-site structure of the ferrous-oxy complexes of human (hIDO) and Shewanella oneidensis (sIDO) indoleamine 2,3-dioxygenases, Xanthomonas campestris (XcTDO) tryptophan 2,3-dioxygenase, and the H55S variant o...

Descripción completa

Detalles Bibliográficos
Autores principales: Davydov, Roman M., Chauhan, Nishma, Thackray, Sarah J., Anderson, J. L. Ross, Papadopoulou, Nektaria D., Mowat, Christopher G., Chapman, Stephen K., Raven, Emma L., Hoffman, Brian M.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2010
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903012/
https://www.ncbi.nlm.nih.gov/pubmed/20353179
http://dx.doi.org/10.1021/ja100518z
Descripción
Sumario:[Image: see text] We have applied cryoreduction/EPR/ENDOR techniques to characterize the active-site structure of the ferrous-oxy complexes of human (hIDO) and Shewanella oneidensis (sIDO) indoleamine 2,3-dioxygenases, Xanthomonas campestris (XcTDO) tryptophan 2,3-dioxygenase, and the H55S variant of XcTDO in the absence and in the presence of the substrate l-Trp and a substrate analogue, l-Me-Trp. The results reveal the presence of multiple conformations of the binary ferrous-oxy species of the IDOs. In more populated conformers, most likely a water molecule is within hydrogen-bonding distance of the bound ligand, which favors protonation of a cryogenerated ferric peroxy species at 77 K. In contrast to the binary complexes, cryoreduction of all of the studied ternary [enzyme-O(2)-Trp] dioxygenase complexes generates a ferric peroxy heme species with very similar EPR and (1)H ENDOR spectra in which protonation of the basic peroxy ligand does not occur at 77 K. Parallel studies with l-Me-Trp, in which the proton of the indole nitrogen is replaced with a methyl group, eliminate the possibility that the indole NH group of the substrate acts as a hydrogen bond donor to the bound O(2), and we suggest instead that the ammonium group of the substrate hydrogen-bonds to the dioxygen ligand. The present data show that substrate binding, primarily through this H-bond, causes the bound dioxygen to adopt a new conformation, which presumably is oriented for insertion of O(2) into the C(2)−C(3) double bond of the substrate. This substrate interaction further helps control the reactivity of the heme-bound dioxygen by “shielding” it from water.