Cargando…
Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering
BACKGROUND: How to extract useful information from complex biological networks is a major goal in many fields, especially in genomics and proteomics. We have shown in several works that iterative hierarchical clustering, as implemented in the UVCluster program, is a powerful tool to analyze many of...
Autores principales: | Aldecoa, Rodrigo, Marín, Ignacio |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904377/ https://www.ncbi.nlm.nih.gov/pubmed/20644733 http://dx.doi.org/10.1371/journal.pone.0011585 |
Ejemplares similares
-
Surprise maximization reveals the community structure of complex networks
por: Aldecoa, Rodrigo, et al.
Publicado: (2013) -
Exploring the limits of community detection strategies in complex networks
por: Aldecoa, Rodrigo, et al.
Publicado: (2013) -
Deciphering Network Community Structure by Surprise
por: Aldecoa, Rodrigo, et al.
Publicado: (2011) -
A sequence motif enriched in regions bound by the Drosophila dosage compensation complex
por: Gallach, Miguel, et al.
Publicado: (2010) -
Hierarchical Clustering Using the Arithmetic-Harmonic Cut: Complexity and Experiments
por: Rizzi, Romeo, et al.
Publicado: (2010)