Cargando…
Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm
BACKGROUND: Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering int...
Autores principales: | Li, Zhanchao, Zhou, Xuan, Dai, Zong, Zou, Xiaoyong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905366/ https://www.ncbi.nlm.nih.gov/pubmed/20550715 http://dx.doi.org/10.1186/1471-2105-11-325 |
Ejemplares similares
-
Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm
por: Wang, ShaoPeng, et al.
Publicado: (2016) -
Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process
por: Saffari, Mohsen, et al.
Publicado: (2021) -
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
por: Radovic, Milos, et al.
Publicado: (2017) -
Using Minimum Redundancy Maximum Relevance Algorithm to Select Minimal Sets of Heart Rate Variability Parameters for Atrial Fibrillation Detection
por: Buś, Szymon, et al.
Publicado: (2022) -
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013)