Cargando…
Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model
BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be eva...
Autores principales: | Chan, Ta-Chien, King, Chwan-Chuen, Yen, Muh-Yong, Chiang, Po-Huang, Huang, Chao-Sheng, Hsiao, Chuhsing K. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905374/ https://www.ncbi.nlm.nih.gov/pubmed/20661275 http://dx.doi.org/10.1371/journal.pone.0011626 |
Ejemplares similares
-
Spatio-temporal analysis on enterovirus cases through integrated surveillance in Taiwan
por: Chan, Ta-Chien, et al.
Publicado: (2014) -
The Impact of Matching Vaccine Strains and Post-SARS Public Health Efforts on Reducing Influenza-Associated Mortality among the Elderly
por: Chan, Ta-Chien, et al.
Publicado: (2010) -
The case for ILI surveillance
por: Thomas, R.E.
Publicado: (2015) -
Probabilistic edge inference of gene networks with markov random field-based bayesian learning
por: Huang, Yu-Jyun, et al.
Publicado: (2022) -
Using a Bayesian Method to Assess Google, Twitter, and Wikipedia for
ILI Surveillance
por: Sharpe, Danielle, et al.
Publicado: (2017)