Cargando…
Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study
Brain functional connectivity (FC) is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed) and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA). ICA is a u...
Autores principales: | Kelly, Robert E., Wang, Zhishun, Alexopoulos, George S., Gunning, Faith M., Murphy, Christopher F., Morimoto, Sarah Shizuko, Kanellopoulos, Dora, Jia, Zhiru, Lim, Kelvin O., Hoptman, Matthew J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905944/ https://www.ncbi.nlm.nih.gov/pubmed/20689712 http://dx.doi.org/10.1155/2010/868976 |
Ejemplares similares
-
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
Analysis of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer's Disease
por: Li, Shanshan, et al.
Publicado: (2012) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011) -
Temporally and Spatially Constrained ICA of fMRI Data Analysis
por: Wang, Zhi, et al.
Publicado: (2014)