Cargando…
L(2)-norm multiple kernel learning and its application to biomedical data fusion
BACKGROUND: This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L(∞), L(1), and L(2 )MKL. In particular, L(2 )MKL is a novel m...
Autores principales: | Yu, Shi, Falck, Tillmann, Daemen, Anneleen, Tranchevent, Leon-Charles, Suykens, Johan AK, De Moor, Bart, Moreau, Yves |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906488/ https://www.ncbi.nlm.nih.gov/pubmed/20529363 http://dx.doi.org/10.1186/1471-2105-11-309 |
Ejemplares similares
-
Optimized data fusion for K-means Laplacian clustering
por: Yu, Shi, et al.
Publicado: (2011) -
A kernel-based integration of genome-wide data for clinical decision support
por: Daemen, Anneleen, et al.
Publicado: (2009) -
Gene prioritization and clustering by multi-view text mining
por: Yu, Shi, et al.
Publicado: (2010) -
Predicting receptor-ligand pairs through kernel learning
por: Iacucci, Ernesto, et al.
Publicado: (2011) -
Predicting breast cancer using an expression values weighted clinical classifier
por: Thomas, Minta, et al.
Publicado: (2014)