Cargando…

Saccharomyces cerevisiae-based system for studying clustered DNA damages

DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (...

Descripción completa

Detalles Bibliográficos
Autores principales: Moscariello, Mario, Sutherland, Betsy
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906745/
https://www.ncbi.nlm.nih.gov/pubmed/20552213
http://dx.doi.org/10.1007/s00411-010-0303-3
Descripción
Sumario:DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00411-010-0303-3) contains supplementary material, which is available to authorized users.