Cargando…

Dopaminergic Control of Attentional Flexibility: Inhibition of Return is Associated with the Dopamine Transporter Gene (DAT1)

Genetic variability related to the dopamine (DA) transporter gene (DAT1) has received increasing attention as a possible modulator of human cognition. The 9-repeat allele of the DAT1 gene is presumably associated with higher striatal DA levels than the 10-repeat allele, which might support inhibitor...

Descripción completa

Detalles Bibliográficos
Autores principales: Colzato, Lorenza S., Pratt, Jay, Hommel, Bernhard
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907268/
https://www.ncbi.nlm.nih.gov/pubmed/20661460
http://dx.doi.org/10.3389/fnhum.2010.00053
Descripción
Sumario:Genetic variability related to the dopamine (DA) transporter gene (DAT1) has received increasing attention as a possible modulator of human cognition. The 9-repeat allele of the DAT1 gene is presumably associated with higher striatal DA levels than the 10-repeat allele, which might support inhibitory control functions. We investigated the impact of the DAT1 gene on the inhibition of return (IOR) effect, which refers to the fact that people are slower to detect a target if it appears in a previously attended location. 140 healthy adults, genotyped for the DAT1 gene, performed an IOR task with stimulus-onset asynchronies (SOAs) between attention cue and target of 150–1200 ms. Nine-repeat carriers showed more pronounced IOR effect than 10/10 homozygous at short SOAs but both groups of subjects eventually reached the same magnitude of IOR. Our findings support the idea that striatal DA levels promote IOR, presumably by biasing the interplay between prefrontal and striatal networks towards greater cognitive flexibility.