Cargando…

Bistability in the actin cortex

Multi-color fluorescence imaging experiments of wave forming Dictyostelium cells have revealed that actin waves separate two domains of the cell cortex that differ in their actin structure and phosphoinositide composition. We propose a bistable model of actin dynamics to account for these experiment...

Descripción completa

Detalles Bibliográficos
Autor principal: Beta, Carsten
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907310/
https://www.ncbi.nlm.nih.gov/pubmed/20576094
http://dx.doi.org/10.1186/1757-5036-3-12
Descripción
Sumario:Multi-color fluorescence imaging experiments of wave forming Dictyostelium cells have revealed that actin waves separate two domains of the cell cortex that differ in their actin structure and phosphoinositide composition. We propose a bistable model of actin dynamics to account for these experimental observation. The model is based on the simplifying assumption that the actin cytoskeleton is composed of two distinct network types, a dendritic and a bundled network. The two structurally different states that were observed in experiments correspond to the stable fixed points in the bistable regime of this model. Each fixed point is dominated by one of the two network types. The experimentally observed actin waves can be considered as trigger waves that propagate transitions between the two stable fixed points. PACS Codes: 87.16.Ln, 87.17.Aa, 89.75.Fb