Cargando…

Targeted DNA Methylation by a DNA Methyltransferase Coupled to a Triple Helix Forming Oligonucleotide To Down-Regulate the Epithelial Cell Adhesion Molecule

The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence the EpCAM gene in a per...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Gun, Bernardina T. F., Maluszynska-Hoffman, Maria, Kiss, Antal, Arendzen, Alice J., Ruiters, Marcel H. J., McLaughlin, Pamela M. J., Weinhold, Elmar, Rots, Marianne G.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2010
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907751/
https://www.ncbi.nlm.nih.gov/pubmed/20593890
http://dx.doi.org/10.1021/bc1000388
Descripción
Sumario:The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence the EpCAM gene in a persistent manner via targeted DNA methylation, a low activity mutant (C141S) of the CpG-specific DNA methyltransferase M.SssI was coupled to a triple-helix-forming oligonucleotide (TFO−C141S) specifically designed for the EpCAM gene. Reporter plasmids encoding the green fluorescent protein under control of different EpCAM promoter fragments were treated with the TFO−C141S conjugate to determine the specificity of targeted DNA methylation in the context of a functional EpCAM promoter. Treatment of the plasmids with TFO−C141S resulted in efficient and specific methylation of the targeted CpG located directly downstream of the triple helix forming site (TFS). No background DNA methylation was observed neither in a 700 bp region of the EpCAM promoter nor in a 400 bp region of the reporter gene downstream of the TFS. Methylation of the target CpG did not have a detectable effect on promoter activity. This study shows that the combination of a specific TFO and a reduced activity methyltransferase variant can be used to target DNA methylation to predetermined sites with high specificity, allowing determination of crucial CpGs for promoter activity.