Cargando…
The Early Time Course of Compensatory Face Processing in Congenital Prosopagnosia
BACKGROUND: Prosopagnosia is a selective deficit in facial identification which can be either acquired, (e.g., after brain damage), or present from birth (congenital). The face recognition deficit in prosopagnosia is characterized by worse accuracy, longer reaction times, more dispersed gaze behavio...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908115/ https://www.ncbi.nlm.nih.gov/pubmed/20657764 http://dx.doi.org/10.1371/journal.pone.0011482 |
Sumario: | BACKGROUND: Prosopagnosia is a selective deficit in facial identification which can be either acquired, (e.g., after brain damage), or present from birth (congenital). The face recognition deficit in prosopagnosia is characterized by worse accuracy, longer reaction times, more dispersed gaze behavior and a strong reliance on featural processing. METHODS/PRINCIPAL FINDINGS: We introduce a conceptual model of an apperceptive/associative type of congenital prosopagnosia where a deficit in holistic processing is compensated by a serial inspection of isolated, informative features. Based on the model proposed we investigated performance differences in different face and shoe identification tasks between a group of 16 participants with congenital prosopagnosia and a group of 36 age-matched controls. Given enough training and unlimited stimulus presentation prosopagnosics achieved normal face identification accuracy evincing longer reaction times. The latter increase was paralleled by an equally-sized increase in stimulus presentation times needed achieve an accuracy of 80%. When the inspection time of stimuli was limited (50ms to 750ms), prosopagnosics only showed worse accuracy but no difference in reaction time. Tested for the ability to generalize from frontal to rotated views, prosopagnosics performed worse than controls across all rotation angles but the magnitude of the deficit didn't change with increasing rotation. All group differences in accuracy, reaction or presentation times were selective to face stimuli and didn't extend to shoes. CONCLUSIONS/SIGNIFICANCE: Our study provides a characterization of congenital prosopagnosia in terms of early processing differences. More specifically, compensatory processing in congenital prosopagnosia requires an inspection of faces that is sufficiently long to allow for sequential focusing on informative features. This characterization of dysfunctional processing in prosopagnosia further emphasizes fast and holistic information encoding as two defining characteristics of normal face processing. |
---|