Cargando…
Rosiglitazone and Cognitive Stability in Older Individuals With Type 2 Diabetes and Mild Cognitive Impairment
OBJECTIVE: Studies have suggested that insulin resistance plays a role in cognitive impairment in individuals with type 2 diabetes. We aimed to determine whether an improvement in insulin resistance could explain cognitive performance variations over 36 weeks in older individuals with mild cognitive...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909046/ https://www.ncbi.nlm.nih.gov/pubmed/20435794 http://dx.doi.org/10.2337/dc09-2030 |
Sumario: | OBJECTIVE: Studies have suggested that insulin resistance plays a role in cognitive impairment in individuals with type 2 diabetes. We aimed to determine whether an improvement in insulin resistance could explain cognitive performance variations over 36 weeks in older individuals with mild cognitive impairment (MCI) and type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 97 older individuals (mean ± SD age 76 ± 6 years) who had recently (<2 months) started an antidiabetes treatment of metformin (500 mg twice a day) (n = 30) or metformin (500 mg/day)+rosiglitazone (4 mg/day) (n = 32) or diet (n = 35) volunteered. The neuropsychological test battery consisted of the Mini-Mental State Examination (MMSE), Rey Verbal Auditory Learning Test (RAVLT) total recall, and Trail Making Tests (TMT-A and TMT-B) performed at baseline and every 12 weeks for 36 weeks along with clinical testing. RESULTS: At baseline, no significant differences were found between groups in clinical or neuropsychological parameters. Mean ± SD values in the entire population were as follows: A1C 7.5 ± 0.5%, fasting plasma glucose (FPG) 8.6 ± 1.3 mmol/l, fasting plasma insulin (FPI) 148 ± 74 pmol/l, MMSE 24.9 ± 2.4, TMT-A 61.6 ± 42.0, TMT-B 162.8 ± 78.7, the difference between TMT-B and TMT-A [DIFFBA] 101.2 ± 58.1, and RAVLT 24.3 ± 2.1. At follow-up, ANOVA models tested changes in metabolic control parameters (FPI, FPG, and A1C). Such parameters improved in the metformin and metformin/rosiglitazone groups (P(trend) < 0.05 in both groups). ANCOVA repeated models showed that results for the metformin/rosiglitazone group remained stable for all neuropsychological tests, and results for the diet group remained stable for the MMSE and TMT-A and declined for the TMT-B (P(trend) = 0.024), executive efficiency (DIFFBA) (P(trend) = 0.026), and RAVLT memory test (P(trend) = 0.011). Results for the metformin group remained stable for the MMSE and TMTs but declined for the RAVLT (P(trend) = 0.011). With use of linear mixed-effects models, the interaction term, FPI × time, correlated with cognitive stability on the RAVLT in the metformin/rosiglitazone group (β = −1.899; P = 0.009). CONCLUSIONS: Rosiglitazone may protect against cognitive decline in older individuals with type 2 diabetes and MCI. |
---|