Cargando…

Experimental Selection for Drosophila Survival in Extremely High O(2) Environments

Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Huiwen W., Zhou, Dan, Nizet, Victor, Haddad, Gabriel G.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909141/
https://www.ncbi.nlm.nih.gov/pubmed/20668515
http://dx.doi.org/10.1371/journal.pone.0011701
Descripción
Sumario:Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very high O(2) environments (90% O(2)), a lethal condition to naïve flies. We demonstrated that tolerance to hyperoxia was heritable in these flies and that these hyperoxia-selected flies exhibited phenotypic differences from naïve flies, such as a larger body size and increased weight by 20%. Gene expression profiling revealed that 227 genes were significantly altered in expression and two third of these genes were down-regulated. Using a mutant screen strategy, we studied the role of some altered genes (up- or down-regulated in the microarrays) by testing the survival of available corresponding P-element or UAS construct lines under hyperoxic conditions. We report that down-regulation of several candidate genes including Tropomyosin 1, Glycerol 3 phosphate dehydrogenase, CG33129, and UGP as well as up-regulation of Diptericin and Attacin conferred tolerance to severe hyperoxia. In conclusion, we identified several genes that were not only altered in hyperoxia-selected flies but we also prove that these play an important role in hyperoxia survival. Thus our study provides a molecular basis for understanding the mechanisms of hyperoxia tolerance.