Cargando…
A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
BACKGROUND: Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to...
Autores principales: | You, Zhu-Hong, Yin, Zheng, Han, Kyungsook, Huang, De-Shuang, Zhou, Xiaobo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909217/ https://www.ncbi.nlm.nih.gov/pubmed/20573270 http://dx.doi.org/10.1186/1471-2105-11-343 |
Ejemplares similares
-
Abnormal structural and functional network topological properties associated with left prefrontal, parietal, and occipital cortices significantly predict childhood TBI-related attention deficits: A semi-supervised deep learning study
por: Cao, Meng, et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010) -
Combining active learning and semi-supervised learning techniques to extract protein interaction sentences
por: Song, Min, et al.
Publicado: (2011) -
Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Joint cortical registration of geometry and function using semi-supervised learning
por: Li, Jian, et al.
Publicado: (2023)