Cargando…
Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays
BACKGROUND: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more soph...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909218/ https://www.ncbi.nlm.nih.gov/pubmed/20576120 http://dx.doi.org/10.1186/1471-2105-11-344 |
_version_ | 1782184289685733376 |
---|---|
author | Chain, Benjamin Bowen, Helen Hammond, John Posch, Wilfried Rasaiyaah, Jane Tsang, Jhen Noursadeghi, Mahdad |
author_facet | Chain, Benjamin Bowen, Helen Hammond, John Posch, Wilfried Rasaiyaah, Jane Tsang, Jhen Noursadeghi, Mahdad |
author_sort | Chain, Benjamin |
collection | PubMed |
description | BACKGROUND: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. RESULTS: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2% of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2 )units ( 6% of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. CONCLUSIONS: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells. |
format | Text |
id | pubmed-2909218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29092182010-07-24 Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays Chain, Benjamin Bowen, Helen Hammond, John Posch, Wilfried Rasaiyaah, Jane Tsang, Jhen Noursadeghi, Mahdad BMC Bioinformatics Research Article BACKGROUND: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. RESULTS: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2% of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2 )units ( 6% of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. CONCLUSIONS: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells. BioMed Central 2010-06-24 /pmc/articles/PMC2909218/ /pubmed/20576120 http://dx.doi.org/10.1186/1471-2105-11-344 Text en Copyright ©2010 Chain et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chain, Benjamin Bowen, Helen Hammond, John Posch, Wilfried Rasaiyaah, Jane Tsang, Jhen Noursadeghi, Mahdad Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title | Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title_full | Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title_fullStr | Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title_full_unstemmed | Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title_short | Error, reproducibility and sensitivity: a pipeline for data processing of Agilent oligonucleotide expression arrays |
title_sort | error, reproducibility and sensitivity: a pipeline for data processing of agilent oligonucleotide expression arrays |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909218/ https://www.ncbi.nlm.nih.gov/pubmed/20576120 http://dx.doi.org/10.1186/1471-2105-11-344 |
work_keys_str_mv | AT chainbenjamin errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT bowenhelen errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT hammondjohn errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT poschwilfried errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT rasaiyaahjane errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT tsangjhen errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays AT noursadeghimahdad errorreproducibilityandsensitivityapipelinefordataprocessingofagilentoligonucleotideexpressionarrays |