Cargando…

Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum

Stratospheric ozone depletion, climate warming and acidification of aquatic ecosystems have resulted in elevated levels of solar radiation reaching many aquatic environments with an increased deleterious impact on a wide range of living organisms. While detrimental effects on living organisms are th...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Brendon J., Hoefel, Daniel, Ee Wong, Pao, Monis, Paul T.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909268/
https://www.ncbi.nlm.nih.gov/pubmed/20668710
http://dx.doi.org/10.1371/journal.pone.0011773
_version_ 1782184301556662272
author King, Brendon J.
Hoefel, Daniel
Ee Wong, Pao
Monis, Paul T.
author_facet King, Brendon J.
Hoefel, Daniel
Ee Wong, Pao
Monis, Paul T.
author_sort King, Brendon J.
collection PubMed
description Stratospheric ozone depletion, climate warming and acidification of aquatic ecosystems have resulted in elevated levels of solar radiation reaching many aquatic environments with an increased deleterious impact on a wide range of living organisms. While detrimental effects on living organisms are thought to occur primarily through DNA damage, solar UV can also damage cellular proteins, lipids and signalling pathways. Cryptosporidium, a member of the eukaryotic phylum Apicomplexa, contain numerous vesicular secretory organelles and their discharge via regulated exocytosis is essential for the successful establishment of infection. Using flow cytometric techniques we demonstrate that solar UV rapidly induces sporozoite exocytosis resulting in a significant reduction in the ability of sporozoites to attach and invade host cells. We found that solar UV induced sporozoite membrane depolarization, resulting in reduced cellular ATP and increased cytosolic calcium. These changes were accompanied by a reduction in the internal granularity of sporozoites, indicative of apical organelle discharge, which was confirmed by analysis of sporozoites with an exocytosis-sensitive dye. The precise timing of apical organelle discharge in the presence of a compatible host cell is critical for sporozoite attachment and invasion. Our results demonstrate for the first time how solar UV radiation can interfere with exocytosis, a fundamental cellular process in all eukaryotic cells. We contend that not only may the forecast increases in solar radiation in both aquatic and terrestrial environments significantly affect members of the Apicomplexa, solar UV-induced membrane depolarizations resulting in cytosolic calcium perturbation may affect a wider range of eukaryotic organisms through antagonistic effects on a myriad of calcium dependant cellular functions.
format Text
id pubmed-2909268
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-29092682010-07-28 Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum King, Brendon J. Hoefel, Daniel Ee Wong, Pao Monis, Paul T. PLoS One Research Article Stratospheric ozone depletion, climate warming and acidification of aquatic ecosystems have resulted in elevated levels of solar radiation reaching many aquatic environments with an increased deleterious impact on a wide range of living organisms. While detrimental effects on living organisms are thought to occur primarily through DNA damage, solar UV can also damage cellular proteins, lipids and signalling pathways. Cryptosporidium, a member of the eukaryotic phylum Apicomplexa, contain numerous vesicular secretory organelles and their discharge via regulated exocytosis is essential for the successful establishment of infection. Using flow cytometric techniques we demonstrate that solar UV rapidly induces sporozoite exocytosis resulting in a significant reduction in the ability of sporozoites to attach and invade host cells. We found that solar UV induced sporozoite membrane depolarization, resulting in reduced cellular ATP and increased cytosolic calcium. These changes were accompanied by a reduction in the internal granularity of sporozoites, indicative of apical organelle discharge, which was confirmed by analysis of sporozoites with an exocytosis-sensitive dye. The precise timing of apical organelle discharge in the presence of a compatible host cell is critical for sporozoite attachment and invasion. Our results demonstrate for the first time how solar UV radiation can interfere with exocytosis, a fundamental cellular process in all eukaryotic cells. We contend that not only may the forecast increases in solar radiation in both aquatic and terrestrial environments significantly affect members of the Apicomplexa, solar UV-induced membrane depolarizations resulting in cytosolic calcium perturbation may affect a wider range of eukaryotic organisms through antagonistic effects on a myriad of calcium dependant cellular functions. Public Library of Science 2010-07-23 /pmc/articles/PMC2909268/ /pubmed/20668710 http://dx.doi.org/10.1371/journal.pone.0011773 Text en King et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
King, Brendon J.
Hoefel, Daniel
Ee Wong, Pao
Monis, Paul T.
Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title_full Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title_fullStr Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title_full_unstemmed Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title_short Solar Radiation Induces Non-Nuclear Perturbations and a False Start to Regulated Exocytosis in Cryptosporidium parvum
title_sort solar radiation induces non-nuclear perturbations and a false start to regulated exocytosis in cryptosporidium parvum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909268/
https://www.ncbi.nlm.nih.gov/pubmed/20668710
http://dx.doi.org/10.1371/journal.pone.0011773
work_keys_str_mv AT kingbrendonj solarradiationinducesnonnuclearperturbationsandafalsestarttoregulatedexocytosisincryptosporidiumparvum
AT hoefeldaniel solarradiationinducesnonnuclearperturbationsandafalsestarttoregulatedexocytosisincryptosporidiumparvum
AT eewongpao solarradiationinducesnonnuclearperturbationsandafalsestarttoregulatedexocytosisincryptosporidiumparvum
AT monispault solarradiationinducesnonnuclearperturbationsandafalsestarttoregulatedexocytosisincryptosporidiumparvum