Cargando…
permGPU: Using graphics processing units in RNA microarray association studies
BACKGROUND: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage...
Autores principales: | Shterev, Ivo D, Jung, Sin-Ho, George, Stephen L, Owzar, Kouros |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910023/ https://www.ncbi.nlm.nih.gov/pubmed/20553619 http://dx.doi.org/10.1186/1471-2105-11-329 |
Ejemplares similares
-
fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies
por: Lin, Jiaxing, et al.
Publicado: (2019) -
DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI
por: Liu, Yongchao, et al.
Publicado: (2011) -
A graphical, interactive and GPU-enabled workflow to process long-read sequencing data
por: Reddy, Shishir, et al.
Publicado: (2021) -
Robust test method for time-course microarray experiments
por: Sohn, Insuk, et al.
Publicado: (2010) -
A permutation-based multiple testing method for time-course microarray experiments
por: Sohn, Insuk, et al.
Publicado: (2009)