Cargando…
Review of Prediction Models to Estimate Activity-Related Energy Expenditure in Children and Adolescents
Purpose. To critically review the validity of accelerometry-based prediction models to estimate activity energy expenditure (AEE) in children and adolescents. Methods. The CINAHL, EMBASE, PsycINFO, and PubMed/MEDLINE databases were searched. Inclusion criteria were development or validation of an ac...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910404/ https://www.ncbi.nlm.nih.gov/pubmed/20671992 http://dx.doi.org/10.1155/2010/489304 |
Sumario: | Purpose. To critically review the validity of accelerometry-based prediction models to estimate activity energy expenditure (AEE) in children and adolescents. Methods. The CINAHL, EMBASE, PsycINFO, and PubMed/MEDLINE databases were searched. Inclusion criteria were development or validation of an accelerometer-based prediction model for the estimation of AEE in healthy children or adolescents (6–18 years), criterion measure: indirect calorimetry, or doubly labelled water, and language: Dutch, English or German. Results. Nine studies were included. Median methodological quality was 5.5 ± 2.0 IR (out of a maximum 10 points). Prediction models combining heart rate and counts explained 86–91% of the variance in measured AEE. A prediction model based on a triaxial accelerometer explained 90%. Models derived during free-living explained up to 45%. Conclusions. Accelerometry-based prediction models may provide an accurate estimate of AEE in children on a group level. Best results are retrieved when the model combines accelerometer counts with heart rate or when a triaxial accelerometer is used. Future development of AEE prediction models applicable to free-living scenarios is needed. |
---|