Cargando…
Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition
BACKGROUND: Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked...
Autores principales: | Yeh, Chia-Lung, Chang, Hsiang-Chih, Wu, Chi-Hsun, Lee, Po-Lei |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910669/ https://www.ncbi.nlm.nih.gov/pubmed/20565751 http://dx.doi.org/10.1186/1475-925X-9-25 |
Ejemplares similares
-
Unmixing Oscillatory Brain Activity by EEG Source Localization and Empirical Mode Decomposition
por: Hansen, Sofie Therese, et al.
Publicado: (2019) -
Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition
por: Amo, Carlos, et al.
Publicado: (2017) -
Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition
por: Soler, Andres, et al.
Publicado: (2020) -
Automatic decomposition of electrophysiological data into distinct nonsinusoidal oscillatory modes
por: Fabus, Marco S., et al.
Publicado: (2021) -
Extractions of steady-state auditory evoked fields in normal subjects and tinnitus patients using complementary ensemble empirical mode decomposition
por: Wang, Kuo-Wei, et al.
Publicado: (2015)