Cargando…
Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor and downstream product of cytokine and growth factor pathways. Among members of the STAT family, STAT3 has garnered particular interest due to its role in cancer and development. Recently, it was proposed that S...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911302/ https://www.ncbi.nlm.nih.gov/pubmed/20558729 http://dx.doi.org/10.1074/jbc.C110.152652 |
_version_ | 1782184451124494336 |
---|---|
author | Phillips, Darci Reilley, Matthew J. Aponte, Angel M. Wang, Guanghui Boja, Emily Gucek, Marjan Balaban, Robert S. |
author_facet | Phillips, Darci Reilley, Matthew J. Aponte, Angel M. Wang, Guanghui Boja, Emily Gucek, Marjan Balaban, Robert S. |
author_sort | Phillips, Darci |
collection | PubMed |
description | The signal transducer and activator of transcription 3 (STAT3) is a transcription factor and downstream product of cytokine and growth factor pathways. Among members of the STAT family, STAT3 has garnered particular interest due to its role in cancer and development. Recently, it was proposed that STAT3 regulates cardiac ATP generation in vivo through protein interaction with the mitochondrial complexes of oxidative phosphorylation, specifically Complexes I/II. For this mechanism to work effectively, the cellular ratio of Complexes I/II and STAT3 must approach one. However, using three different proteomic approaches in cardiac tissue, we determined the ratio of Complexes I/II and STAT3 to be ∼10(5). This finding suggests that direct protein interaction between Complexes I/II and STAT3 cannot be required for optimal ATP production, nor can it dramatically modulate oxidative phosphorylation in vivo. Thus, STAT3 is likely altering mitochondrial function via transcriptional regulation or indirect signaling pathways that warrant further investigation. |
format | Text |
id | pubmed-2911302 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-29113022010-08-03 Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS Phillips, Darci Reilley, Matthew J. Aponte, Angel M. Wang, Guanghui Boja, Emily Gucek, Marjan Balaban, Robert S. J Biol Chem Reports The signal transducer and activator of transcription 3 (STAT3) is a transcription factor and downstream product of cytokine and growth factor pathways. Among members of the STAT family, STAT3 has garnered particular interest due to its role in cancer and development. Recently, it was proposed that STAT3 regulates cardiac ATP generation in vivo through protein interaction with the mitochondrial complexes of oxidative phosphorylation, specifically Complexes I/II. For this mechanism to work effectively, the cellular ratio of Complexes I/II and STAT3 must approach one. However, using three different proteomic approaches in cardiac tissue, we determined the ratio of Complexes I/II and STAT3 to be ∼10(5). This finding suggests that direct protein interaction between Complexes I/II and STAT3 cannot be required for optimal ATP production, nor can it dramatically modulate oxidative phosphorylation in vivo. Thus, STAT3 is likely altering mitochondrial function via transcriptional regulation or indirect signaling pathways that warrant further investigation. American Society for Biochemistry and Molecular Biology 2010-07-30 2010-06-17 /pmc/articles/PMC2911302/ /pubmed/20558729 http://dx.doi.org/10.1074/jbc.C110.152652 Text en © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Reports Phillips, Darci Reilley, Matthew J. Aponte, Angel M. Wang, Guanghui Boja, Emily Gucek, Marjan Balaban, Robert S. Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title | Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title_full | Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title_fullStr | Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title_full_unstemmed | Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title_short | Stoichiometry of STAT3 and Mitochondrial Proteins: IMPLICATIONS FOR THE REGULATION OF OXIDATIVE PHOSPHORYLATION BY PROTEIN-PROTEIN INTERACTIONS |
title_sort | stoichiometry of stat3 and mitochondrial proteins: implications for the regulation of oxidative phosphorylation by protein-protein interactions |
topic | Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911302/ https://www.ncbi.nlm.nih.gov/pubmed/20558729 http://dx.doi.org/10.1074/jbc.C110.152652 |
work_keys_str_mv | AT phillipsdarci stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT reilleymatthewj stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT aponteangelm stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT wangguanghui stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT bojaemily stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT gucekmarjan stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions AT balabanroberts stoichiometryofstat3andmitochondrialproteinsimplicationsfortheregulationofoxidativephosphorylationbyproteinproteininteractions |