Cargando…

Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD

The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Beagle, Brandon, Johnson, Gail V. W.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911377/
https://www.ncbi.nlm.nih.gov/pubmed/20676368
http://dx.doi.org/10.1371/journal.pone.0011821
Descripción
Sumario:The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions.