Cargando…
Differences in the BAL proteome after Klebsiella pneumoniae infection in wild type and SP-A-/- mice
BACKGROUND: Surfactant protein-A (SP-A) has been shown to play a variety of roles related to lung host defense function. Mice lacking SP-A are more susceptible to infection than wild type C57BL/6 mice. We studied bronchoalveolar lavage (BAL) protein expression in wild type and SP-A-/- mice infected...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911411/ https://www.ncbi.nlm.nih.gov/pubmed/20565803 http://dx.doi.org/10.1186/1477-5956-8-34 |
Sumario: | BACKGROUND: Surfactant protein-A (SP-A) has been shown to play a variety of roles related to lung host defense function. Mice lacking SP-A are more susceptible to infection than wild type C57BL/6 mice. We studied bronchoalveolar lavage (BAL) protein expression in wild type and SP-A-/- mice infected with Klebsiella pneumoniae by 2D-DIGE. METHODS: Mice were infected intratracheally with K. pneumoniae and after 4 and 24 hours they were subject to BAL. Cell-free BAL was analyzed by 2D-DIGE on two-dimensional gels with pH ranges of 4-7 and 7-11. Under baseline conditions and at 4 and 24 hr post-infection BAL was compared between untreated and infected wild type and SP-A-/- mice. Sixty proteins identified by mass spectrometry were categorized as host defense, redox regulation, and protein metabolism/modification. RESULTS: We found: 1) ~75% of 32 host defense proteins were lower in uninfected SP-A-/- vs wild type, suggesting increased susceptibility to infection or oxidative injury; 2) At 4 hr post-infection > 2/3 of identified proteins were higher in SP-A-/- than wild type mice, almost the exact opposite of untreated mice; 3) At 24 hr post-infection some proteins continued increasing, but many returned to baseline; 4) In infected wild type mice significant changes occurred in 13 of 60 proteins, with 12 of 13 increasing, vs on 4 significant changes in SP-A-/- mice. Infection response patterns between strains demonstrated both commonalities and differences. In several cases changes between 4 and 24 hr followed different patterns between strains. CONCLUSIONS: These indicate that SP-A plays a key role in regulating the BAL proteome, functioning indirectly to regulate lung host defense function, possibly via the macrophage. In the absence of SP-A baseline levels of many host defense molecules are lower. However, many of these indirect deficits in SP-A-/- mice are rapidly compensated for during infection, indicating that SP-A also has a direct role on host defense against K. pneumoniae that may be instrumental in determining clinical course. |
---|