Cargando…

Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM) rats than in those from Wistar Kyoto rats (WKY/IZM) by tumor necrosis factor-alpha (TNF-α) or hypoxia and reoxygenation...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamagata, Kazuo, Kitazawa, Takuya, Shinoda, Masahiro, Tagawa, Chika, Chino, Makoto, Matsufuji, Hiroshi
Formato: Texto
Lenguaje:English
Publicado: SAGE-Hindawi Access to Research 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911588/
https://www.ncbi.nlm.nih.gov/pubmed/20700422
http://dx.doi.org/10.4061/2010/386389
Descripción
Sumario:We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM) rats than in those from Wistar Kyoto rats (WKY/IZM) by tumor necrosis factor-alpha (TNF-α) or hypoxia and reoxygenation (H/R) and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1) by TNF-α in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1) mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF-α-induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.